Energy Analytics Power and Renewables

An Intro to Locational Marginal Pricing

bySarp Ozkan

Locational marginal pricing (LMP) serves as a valuable mechanism for pricing electricity in managed wholesale markets. It defines the price for electricity in real time at specific points referred to as nodes within a transmission system. These prices represent clear benchmark signals for buyers and sellers in electricity markets. They provide vital insights into decisions concerning infrastructure investment, enable higher levels of grid stability, and produce competitive markets for reliable power sources.

LMP fluctuates on an hourly basis depending on various factors and can vary significantly between locations. According to leading economists, LMP sends accurate price signals to generators and customers, informing them when and where power is cheap or expensive. Market participants benefit from access to transparent real-time data to make reliable decisions about investment, resulting in more innovation, efficiency, reliability and market liquidity.

Chart-showing-average-locational-marginal-prices-in-Texas-lmp-energy
Figure 1: Average locational marginal prices in Texas colored by price range. Source: Enverus P&R — Enhanced LMP.

Day ahead vs. real-time energy markets

Generally, most ISOs have day-ahead and real-time LMP. Day-ahead LMP involves pricing in day-ahead markets, allowing participants to buy and sell wholesale electricity a day before they operate, avoiding potential market volatility. The day-ahead energy market includes a financially binding schedule of commitments for the sale and purchase of energy. Every day, the ISO develops a price based on the data submitted to the market. Usually, a supply bid or demand offer will be cleared by the day-ahead energy market if the rate equals or is less than the LMP for a specific location.

Real-time LMP represents a price in real time and allows participants to buy and sell power during the day of operation. For example, at noon you anticipate you require 100 megawatts of electricity demand and purchase that exact amount the day before on the day-ahead market. However, when the time comes, demand is a little higher at 105 megawatts, so you buy the additional 5 megawatts on the real-time market. Prices for this market are typically more volatile compared to the day-ahead market prices.

The real-time energy market balances the differences between day-ahead commitments and real-time demand for production of electricity. The real-time energy market generates a secondary financial settlement. It creates the real-time LMP that is either paid or charged to market participants within the day-ahead energy market for demand or generation that differs from the day-ahead commitments.

Graphs-showing-LMP-summary-for-single-node-in-ERCOT
Figure 2: LMP summary for a single node in ERCOT. Source: Enverus P&R — Enhanced LMP.

What are the three core components of an LMP?

LMPs consist of three core components: energy price, congestion cost and losses.

System Energy Price The energy component of all LMP is the price for electric energy at the “reference point,” which refers to the load-weighted average of the node prices. The costs of producing electricity by a generator are dependent on several factors, including the price of fuel, which can fluctuate considerably over time. Generators provide their output into the market at prices that consider these factors and other potential production costs.

Transmission Congestion Costs The congestion aspect of node LMP refers to the marginal costs of congestions at a particular node compared to the load average of the system prices. When demand is low, electricity typically flows unrestrained from point to point in the grid. As demand starts to rise, the physical constraints of the transmission system may influence how much power can flow safely through lines and substations. Furthermore, some equipment or lines may not be operating due to maintenance or repair. As congestion occurs, the cost of moving electricity along those lines gets bid up.

Cost of Marginal Losses The third component of LMP is known as the cost of marginal losses. Losses are effectively the electricity lost during the process of long-distance transport.

Marginal loss prices are an element of marginal pricing and reflect the fractional change in cost due to the shift in system line losses. The loss element of LMP at a particular node represents the cost of losses at that location respective to the load-weighted average of the system node prices. In some situations, like in ERCOT, marginal line losses are not considered in the price formation.

Graphs-showing-decomposition-of-the-Lost-Pines-1-natural-gas-plant's-marginal-cost-components
Figure 3: Decomposition of the Lost Pines 1 natural gas plant’s marginal cost components. Source: Enverus P&R — MUSE.

What are locational marginal prices used for?

For everything! Without prices and transparency, there is no efficient market. LMP makes the whole electricity market work — it’s crucial in fulfilling workflows for developers looking to site a project. Developers need to understand the price they can receive for their electricity in the merchant market and may use historical prices to inform power purchase agreement rates or they can index to a particular price node. Traders utilize this data to facilitate a liquid market and make trade decisions based on a plethora of factors including the impact of outages, congestion and weather. They also use it to understand what the impact of the different components of LMP are on the price, particularly the impact of congestion, which can be used for many meaningful trade opportunities.

Request sample data to learn more about LMP and Enverus’ Power & Renewables solutions.

Picture of Sarp Ozkan

Sarp Ozkan

Sarp Ozkan is VP of Commercial Product at Enverus. He joined Enverus through the acquisition of products and services from Ponderosa Advisors in 2016 and has more than 10 years of research and modeling experience in the upstream, downstream and power markets. Sarp has been a trusted energy expert for the media and for state regulatory bodies throughout the U.S. and has led consulting projects around many M&A and strategy related inquiries. He has presented at many commercial and academic conferences around the world and been published in several peer-reviewed journals. Sarp holds a Master of Science in Mineral and Energy Economics from the Colorado School of Mines, a Master of Science in Petroleum Economics and Management from the Institut Francais du Petrole (IFP School), and a Bachelor of Arts in Economics from the University of Chicago.

Subscribe to the Enverus Blog

A weekly update on the latest “no-fluff” insight and analysis of the energy industry.

Related Content

energy-transition
Energy Analytics Energy Transition
ByEnverus

The energy transition and the drive toward net zero have created a nascent market where investment opportunities, regulations and risks evolve daily.

energy-transition
Energy Transition
ByMarc De Guzman

Natural gas power plants have become increasingly attractive to investors, due to rising load growth expectations and the need for reliable grid balance. With coal plant retirements and a surge in intermittent generation, natural gas is critical for ensuring adequate...

Enverus_Press_Release_EV_Regional_Volatility_Thumbnail
Power and Renewables
ByDavid Watson

As the process to successfully build profitable renewable assets becomes more challenging, the need for accurate and up-to-date data on the power grid is needed more than ever.

bA
Financial Services Operators
ByEnverus

Energy Stakeholders Meet in New Mexico to Address Key Permian Basin Issues Last month, stakeholders from across the energy sector gathered in New Mexico to tackle the pressing issues facing the Permian Basin. Among the wide-ranging discussions, three key themes...

Enverus Press Release - Heightened natural gas price volatility expected amid supply and demand challenges
Oilfield Services
ByAdriana Bickford

In today’s oil and gas industry, standing out and securing visibility with operators has become increasingly challenging.  As traditional marketing channels lose their effectiveness, oilfield service providers are left looking for powerful ways to showcase their strengths and seize valuable...

Enverus Blog - Oil and gas procurement automation: End project delays and overspending
Operators
ByEnverus

Multilateral wells have transformed Canada's Clearwater and Lloydminster Mannville plays, among others, into some of the best resource plays in North America today.

energy-transition
Energy Transition
ByChris Griggs

With 2025 less than two months away, it's time to prepare yourself with key energy insights and the latest energy trends for the new year. The highlight anticipated Enverus e-book, slated for release in early January 2025, has the energy community buzzing. Today,...

Enverus Press Release - Enverus Integrates With Fendahl to Enhance Energy Trading and Risk Management Solutions
Analyst Takes Intelligence
ByAl Salazar, Enverus Intelligence® | Research (EIR) Contributor

The following blog is distilled from an interview on the CBC’s “The Eyeopener,” hosted by Loren McGinnis who interviewed Enverus Intelligence® Research’s very own Al Salazar. Click here to listen to the full radio segment.  In its recent World Energy...

bA
Oilfield Services
ByMac Graham

Make strategic supply chain decisions faster with data in a single source-to-pay platform In the world of oil and gas, the importance of data and efficient supply chain management cannot be overstated. These elements are the backbone of successful operations,...

Let’s get started!

We’ll follow up right away to show you a quick product tour.

Let’s get started!

We’ll follow up right away to show you a quick product tour.

Sign up for our Blog

Register Today

Sign Up

Power Your Insights

Connect with an Expert

Access Product Tour

Speak to an Expert